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ABSTRACT: The advent of microfluidic technology for genetic analysis has begun to impact forensic science. Recent advances in microfluidic
separation of short-tandem-repeat (STR) fragments has provided unprecedented potential for improving speed and efficiency of DNA typing. In addi-
tion, the analytical processes associated with sample preparation––which include cell sorting, DNA extraction, DNA quantitation, and DNA amplifica-
tion––can all be integrated with the STR separation in a seamless manner. The current state of these microfluidic methods as well as their
advantages and potential shortcomings are detailed. Recent advances in microfluidic device technology, as they pertain to forensic DNA typing, are
discussed with a focus on the forensic community.
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In the early 1990s, microfabrication technology acquired from
the rapidly evolving electronics industry gave birth to a new era
in analytical chemistry. These established techniques have been
utilized to develop bioanalytical microfluidic devices, termed ‘‘lab-
on-a-chip’’ (LOC) or micro-total analysis systems (lTAS) for their
potential to incorporate many macroscale techniques onto a single
microchip. Microdevices can be fabricated from a variety of
substrates, most commonly silicon, borofloat silica, and polymeric
substrates such as polydimethylsiloxane (PDMS), polycarbonate or
poly(methyl methacrylate; PMMA) (1). Microchip dimensions are
typically on the order of 1–10 cm in length and width, and
1–2 mm in height. Substructures are built into the devices for
fluidic manipulation using wet chemical (hydrofluoric acid) etching
(borofloat silica), reactive ion etching (silicon), or hot embossing
(polymeric devices). Initially, analytical microchips were utilized
solely for separations that were typically performed on capillary,
providing proof-of-concept for the technology transfer from the
capillary to the microchip platform (2). Despite the realization that
the potential for microchip technology lay far beyond the equival-
ent processes that could be performed on a capillary, the develop-
ment and integration of multi-process functionality into the very
devices used for separation (as inferred by the name ‘‘lab-on-a-
chip’’) lagged substantially behind advances in chip-based separa-
tions. However, the last half decade has seen a burst of research
activity in chip-based sample preparation, yielding, as delineated in
the following subsections, methods for cell sorting, DNA extrac-
tion, DNA quantitation, PCR amplification, and DNA separations
as processes that can be effectively performed on microdevices
(3,4). As such, microdevices have the potential to revolutionize
forensic DNA testing with state-of-the-art analytical technology.

Historically, forensic DNA analysis has utilized slab gel electro-
phoresis for separation of restriction fragment length polymorphism
(RFLP) fragments and polymerase chain reaction (PCR) products
(5). The forensic DNA community saw a dramatic change upon
the introduction of capillary electrophoresis (CE), and since the
mid-1990s, separations of PCR products have routinely been per-
formed using CE in forensic laboratories (6,7). CE brought about a
limited degree of automation of separation and detection, unavaila-
ble in the slab gel format. Separations that typically required sev-
eral hours on the slab gels could be completed in approximately
30 min (8). For clinical DNA analysis, the advent of microchip
electrophoresis has reduced the separation time by yet another order
of magnitude [e.g., (9)]. It is not unreasonable to envision similar
improvements for forensic analyses. For the mere advantage in fas-
ter DNA separations alone, microchips are clearly worth implemen-
tation into the forensic DNA community; however, with CE and
microchip electrophoresis, the overall processing time per sample
has not been significantly reduced. Therein lies the greatest advant-
age of the analytical microchip––the potential to incorporate sample
processing steps (DNA extraction, quantitation, amplification, and
separation) onto microdevices for fast, automated processing. Whe-
ther the ultimate embodiment of the device is in the form of mod-
ules or a totally integrated system will be driven by the needs of
the forensic science community.

The analytical microchip has numerous advantages over the cur-
rent technology, including increased efficiency, decreased sample
handling, and decreased reagent and sample consumption. In the
forensics community, decreased sample handling is a key feature, as
there is less opportunity for sample contamination during the process-
ing steps. The use of microdevices has resulted in increased effi-
ciency of numerous methods due to the dramatic decrease in reaction
volumes and high surface-area-to-volume ratio when compared with
the conventional processes. The volumes typically involved in fluid
manipulation on microdevices are in the nanoliter range, rather than
the microliters associated with conventional methods. The resulting
benefit would be a significant reduction in reagent consumption, lead-
ing to lower analysis costs. These features make analytical micro-
chips the ideal new technology platform for forensic DNA analysis.
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Motivation

With the backlog of DNA evidence to be analyzed in our
nation’s forensic laboratories, the need for a new era in forensic
DNA analysis technology is increasingly evident. According to the
National Institute of Justice 2004 Annual Report, estimates place
the DNA backlog at approximately 800,000 convicted offender
samples and approximately 485,000 criminal cases awaiting analy-
sis in our nation’s state and federal crime labs, primarily due to
limited resources, such as time and funding (10). The backlog
undermines the full potential of DNA databases, as numerous
samples have not been typed and are, therefore, not yet included.
Currently, forensic DNA analysis, including DNA extraction,
quantitation, amplification, and separation, requires approximately
12–36 h of linear time to complete, much of which requires direct
technician time. An integrated forensic DNA analysis microdevice,
however, could complete these processes on the order of 1–2 h––
all in an automated system, reducing not only analysis time but
also user intervention. It is the tremendous inherent potential of
microdevices that stands to revolutionize forensic DNA analysis
and warrants attention.

Sample Processing Steps

As with almost any form of genomic interrogation, forensic
DNA analysis requires numerous sample preparation steps prior to
the analytical step that generates an STR profile, all of which could
benefit by translation to the microchip format. The steps discussed
in detail in the following section include differential extraction,
DNA purification, DNA quantitation, PCR, and short tandem repeat
(STR) fragment separations. While the theory behind each process-
ing step remains largely unchanged, the specific methods have been
altered to varying extents, to accommodate the microchip format
and improve performance. Although not an exhaustive discussion
of the pertinent literature, the following sections present the current
state of microfluidic technology as applied to these analytical pro-
cesses by alluding to select reports in the literature that we feel are
particularly relevant.

Cell Sorting ⁄ Differential Extraction

Analysis of sexual assault evidence requires the use of ‘‘differen-
tial extraction’’ to obtain separate fractions of male and female
DNA. Differential extraction is one bottleneck in the automation of
forensic DNA analysis. While significant improvements to the other
‘‘core’’ processes have been addressed to enhance throughput, dif-
ferential extraction has advanced relatively little in the same period.
The conventional method involves differential lysis of sperm and
epithelial cells, employing centrifugation to separate the epithelial
cell DNA (female fraction) from the sperm cells (male fraction).
Although not routine, microfluidic control of flow on microdevices
has been shown possible using centrifugation as a driving force in
a compact disc-like device (11) and for clinical applications that
include preparation of plasma from whole blood (12). While the
approach has not been applied to forensic differential extraction,
other methods have been pursued as an alternative for obtaining
male and female fractions on microfluidic devices.

One microscale method for differential extraction (13) used low-
power sonication for selective epithelial cell lysis and a filter (pore
size not indicated) to separate the epithelial cell lysate from the
intact sperm cells ⁄ heads. Sperm were subsequently lysed using
more-stringent conditions, followed by DNA extraction from both
cell lysates on the same device (Fig. 1). The differential extraction
process using this microfluidic-based system was fully automated
and yielded male and female fractions of DNA in <3 h. Results
indicating the purity of the recovered male and female fractions
have not yet been reported in the literature to our knowledge. The
work is the only known example of true microchip-based differen-
tial extraction, although one could envision slight alterations to the
conventional method to obtain equivalent results, such as sorting
the cell types and extracting the DNA from each fraction
independently.

Numerous approaches for cell sorting have been demonstrated
on microdevices, with only one specifically addressing the separ-
ation of sperm and epithelial cells. In a very simplistic approach,
our laboratory demonstrated the separation of sperm and epithelial
cells on a microdevice containing a single straight microchannel

FIG. 1—Sample processing cartridge developed by Microfluidic Systems, Inc. for forensic differential extraction in under 3 hours. The device utilizes fluidic
pumps, solenoid valves, rotary valves, and ultrasonic horns interfaced to the device through a pneumatic manifold to control fluidic movement. In an
automated fashion, the biological material is eluted from the swab, epithelial cells selectively lysed using sonication, the intact sperm cells separated from the
epithelial cell lysate using a filter, and the DNA purified from each using a silicon solid phase. (Photo courtesy of Microfluidic Systems, Inc.)
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(14). The separation was based upon differential sedimentation rates
of the two cell types possessing distinct physicochemical properties.
As shown in Fig. 2, a mixture of sperm and epithelial cells are
introduced to the inlet reservoir. After 5 min of settling time, the
sperm cells were mobilized in the channel with a negative-pressure,
syringe-pump driven flow. The sperm cells were then collected in
the outlet (right) reservoir, while the epithelial cells remain in the
inlet (left) reservoir. A shortcoming of the approach is the potential
presence of free DNA in the sample, most likely from lysed epithe-
lial cells, although this can be addressed through modification of
the microchannel surface. While the method is the only published
microscale technique specifically addressing sexual assault evi-
dence, other established macroscale cell-sorting techniques are
potentially applicable to this sample.

A common cell sorting mechanism that has gained widespread
use in the macroscale is fluorescence-activated cell sorting (FACS).
The Quake lab (15,16) demonstrated FACS on the microscale, in
silicon ⁄ PDMS microdevices. The technique required that one (or
both) of the cell types be fluorescently tagged for detection by the
system and, as a result, lead to a reproducible method of cell sort-
ing. However, a major drawback was the need to fluorescently tag
one cell type and utilize an optical setup or fluorescence detection,
which, for a stand-alone instrument, would add substantially to the
cost of the microchip method. Schoell et al. (17,18) applied flow
cytometry, in the macroscale, to the separation of sperm and epi-
thelial cells, using fluorescently tagged antibodies to cell surface
antigens or a DNA stain to distinguish the cell types. In the case of
the DNA stain, the cells were distinguished via stain intensity and,
thus, ploidy. The results presented were notable as they yielded

higher sensitivity than the conventional differential extraction tech-
nique. However, a drawback to the use of antibodies is that the
extent of degradation of cell membranes in forensic samples is
unknown and could substantially diminish the antibody recognition
of cell type. In addition, the sensitivity of the technique using the
DNA stain is unclear when based solely on ploidy. The authors
indicated that use of the technique would require changing the
method of evidence collection from a vaginal swab to flushing the
vagina with an isotonic solution.

Sperm capture was also demonstrated using dielectrophoresis, in
which cells differentially migrate toward a concentrated electric
field depending upon their physical properties, on a microdevice
(19). The method, developed for the infertility industry, has obvious
extension to forensic differential extraction, as the electric field can
be utilized to trap the cells of interest, including sperm cells in a
cellular ⁄ biological mixture, based upon their physicochemical prop-
erties such as conductivity and permittivity. A potential drawback
to the technique is the adherence of sperm cells to the microchip
substrate at the trapping site. An analogous technique using an
acoustic field to trap (and levitate) the sperm cells in the middle of
the microchannel (rather than at the microchannel surface) is being
developed to circumvent the limitation (Fig. 3). The particle-
trapping technique utilizing acoustic standing waves has been
developed by the Laurell and Nilsson groups (20,21) and was
recently applied to forensic differential extraction (22). Upon infu-
sion of the sample, sperm cells were trapped in the near field of an
ultrasonic resonator above a piezoceramic microtransducer, whereas
free DNA (from lysed epithelial cells) was not retained but directed
to a reservoir for subsequent testing. After washing the trapped

(a) (b)

FIG. 2—Separation of sperm and epithelial cells on a microfluidic device. (a) The sperm and epithelial cell mixture is added to the inlet reservoir of the
microdevice. (b) The epithelial cells sediment to the bottom of the inlet reservoir (t = 0). After 5 min (t = 1), flow is induced (t = 2) to mobilize the sperm
cells, whereas the epithelial cells are retained in the inlet reservoir, adsorbed to the glass substrate. At t = 3, the sperm cells are collected in the outlet reser-
voir, from which further sample processing (DNA extraction, PCR amplification, and DNA separation) can occur. Photomicrographs of the inlet reservoir
and channel show the epithelial cells and sperm cells, respectively, at a late stage of the separation. (Figure adapted from and reproduced with permission
from Horsman et al., Analytical Chemistry 2005, 77, 742–9. Copyright 2005 American Chemical Society.)

786 JOURNAL OF FORENSIC SCIENCES



cells with buffer, the sperm cells were released and directed into a
second reservoir.

A macroscale cell sorting method was also developed using an
8 lm filter, which allows sperm cells to pass through the filter,
while epithelial cells were retained (23). A drawback to the method
is that any free DNA or nuclei from lysed epithelial cells will pen-
etrate the membrane and, thus, contaminate the sperm cell fraction.
In an alternate manifestation (24), a 2 lm filter was utilized to sep-
arate epithelial cell lysate from sperm cells, which circumvents the
problem encountered above with respect to lysed epithelial cell
DNA contaminating the sperm cell fraction. As clogging can be a
problem with filter-based separation mechanisms, the authors inclu-
ded an 11 lm prefilter. While filter-based methods are not cur-
rently performed on microdevices, implementation of the separation

on a microchip would be relatively straightforward, with the major
hurdles likely being the microfabrication and potential clogging of
the microchannel.

Although not specifically developed for the microchip platform,
Eisenberg (25) reported an antibody-based approach to capture
sperm cells. A cocktail of antibodies to sperm cell surface antigens
was anchored to magnetic beads over which the sample flows. The
beauty of the approach is the ability to exploit the specificity of
Ab–Ag binding to selectively capture sperm cells from evidentiary
material that may be comprised of a mixture of sperm cells, white
blood cells, epithelial cells, cell lysates, etc. The major drawback,
as discussed with the FACS method above, is the unknown level
of sperm cell membrane degradation that will render the sperm cell
unamenable to antibody complexation. Additionally, the introduct-
ion of unlysed epithelial cells into the column could significantly
compromise the efficiency of the separation. Although the method
has not been demonstrated on a microfluidic platform, one could
envisage the translation of the separation mechanism to a microde-
vice, with the provision that the drawbacks described could be
effectively addressed.

As indicated, the translation of conventional differential extr-
action to microdevices is still in its infancy. While only a few
microchip methods specifically addressing the separation of sperm
and epithelial cells ⁄ DNA have been demonstrated to date, a num-
ber of methods have shown potential for application to the partic-
ular analysis. These microchip-based methods, once fully
developed, will require rigorous validation and testing with case-
work samples to fully demonstrate their capabilities and benefits.
Integration of differential extraction with downstream sample pro-
cessing techniques also remains to be demonstrated.

DNA Purification

Historically, conventional methods utilized to purify DNA for
forensic analysis have typically included an organic extraction (e.g.,
phenol chloroform) step. These protocols, although effective for
recovering high-molecular-weight DNA for downstream analysis,
require multiple vortexing, centrifugation, and transfer steps that
are not easily translated to microfluidic platforms. More recently
developed techniques, however, have shifted to the use of solid
phase extraction (SPE) methods (Qiagen, DNA IQ, etc.), reducing
the time required for the extraction while maintaining recovery and
sample purity and integrity. In addition to enabling faster sample
preparation, these protocols are more easily translated into micro-
device formats. Solid phases such as silica beads, sol-gels, or ion
exchange resins can be easily packed into microdevices to create a
SPE bed or column for DNA purification. Additionally, a variety
of novel solid phases can be created in microdevices during the
fabrication process that are suitable for sample purification.
Although many of these methods were developed for clinical diag-
nostic applications, the devices and techniques should be readily
translatable to forensic applications, and a number research groups
are focusing efforts on concerns unique to the forensic community.
The advancement of these methods is key to the establishment of
sample preparatory steps in microdevices, either as stand-alone sys-
tems or as an essential component of a fully integrated, microchip-
based analysis to speed casework handling.

The first instance of a truly microchip-based SPE was published
by Christel et al. (26) in 1999. A silicon microdevice containing
pillars for high surface-area-to-volume ratios to increase DNA
adsorption was designed by the group for the purification and con-
centration of DNA for PCR amplification. As commonly utilized
with other silica-based SPE methods, a chaotropic salt (guanidine

FIG. 3—Acoustic trapping of cells in a microfluidic device. (a) Photo-
graph of the glass channel structure of the microdevice. The microtransduc-
ers (seen in cut-away view) are placed directly below the intersections of
the channels. A cut-away view of the center of the main channel in the
acoustic trapping device is also shown. Cells flow through the microfluidic
channels and directly over the microtransducers (fabricated into a printed
circuit board layer). Upon activation of the transducers, an acoustic stand-
ing wave is set up in the microdevice, resulting in a pressure minimum in
the center of the channel (as indicated), where cells are trapped. (b) Photo-
micrograph illustrating the trapping of fluorescently tagged polystyrene
beads in the microdevice. The beads are trapped at the intersection of the
main channel and a side channel. The channel walls are indicated in white.
Outlined in red is the approximate size of the transducer, above which the
cells are trapped. (A portion of the figure (a, bottom) adapted with permis-
sion from Nilsson et al., Acoustic Trapping of Cells in a Microfluidic For-
mat. Micro Total Analysis Systems 2005, Proceedings of the mTAS 2005
Symposium, 9th, Boston, MA. 2005;5. Photographs courtesy of T. Laurell
and J. Nilsson of Lund University, Sweden.)
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HCl) was used as the binding ⁄ load solution, followed by an ethanol
wash to remove proteins, and DNA elution with water. This repre-
sented the first microchip-based DNA purification accomplished;
however, the complex reactive-ion-etching protocol utilized to fab-
ricate the solid phase, combined with the high cost to produce such
a device, limits the potential utility of the format. In addition, cap-
ture efficiencies reported with the device using stock lambda DNA
were only 50%, limiting its utility for low copy purifications where
retention of DNA is imperative. Cady et al. (27) have employed a
similar design concept with the goal of providing a device with
higher binding capacity (>200 ng). However, it was not possible to
gauge the effectiveness of the device for forensic analysis as no
extraction efficiencies were reported. While efforts toward extract-
ing DNA from larger volume samples are certainly needed, extrac-
tion must yield a reasonably concentrated DNA solution amenable
to downstream processes (e.g., PCR). With DNA eluted from the
solid phase in an unusually large volume (250 lL) in the work
(27), the likelihood that such a method could be effectively integra-
ted with other microchip processes is minimized. While the extrac-
tion efficiencies attainable with chromatographic solid phases
created by microfabricated pillars are not readily apparent in the lit-
erature, there is no question that, in the future, high-surface-area,
functionalized solid phases may prove to be a robust and efficient
means for DNA purification. As depicted in Fig. 4, functionalized
surfaces containing pillars and ⁄or pores that provide increased sur-
face areas, and a concomitant increase in capacity, for DNA bind-
ing can be microfabricated, without the issues of back pressure and
device filling associated with packed solid phases. These new
phases may provide reproducibly uniform surfaces with which to
extract DNA.

In a more direct translation of current macroscale extraction pro-
tocols, other microchip-based purification systems have focused on
utilizing a silica bead or silica sol-gel matrix solid phase for DNA
purification. The use of these solid phases for DNA extraction was
first miniaturized in a capillary format to demonstrate the utility of
the proposed method in the microscale (28). Tian et al. (28),
employing a 500 nL capillary-based chamber packed with a silica
particles, established that PCR-amplifiable DNA (with 80–90% of
proteins removed during the load and wash steps) could be
obtained from white blood cells with high extraction efficiencies
(70%). The work demonstrated both the suitability of microminia-
turized SPE methods for a wide variety of biological species (white
blood cells, cultured cells, whole blood) and the feasibility of incor-
porating such methods into microfabricated devices.

The microscale extraction technique was extrapolated to silica
microdevices by Wolfe et al. (29) who evaluated a variety of silica
and silica ⁄ sol-gel matrices for DNA extraction. In the work, the
authors highlight the potential problem associated with using silica
beads or particles in a microdevice: the tendency of these particles
to pack more tightly under flow as multiple extractions proceed,
thus affecting the reproducibility of repeated extractions. The chal-
lenge was circumvented in designs such as those proposed by Chri-
stel (26) and Cady (27), which contain microfabricated pillars that
are part of the channel. Recent work in our lab suggests that if the
devices are single use, packed silica bead solid phases are accept-
able purification phases for DNA extraction. Alternatively, sol-gels,
liquid colloidal suspensions of silica-based materials that can be
acid or base catalyzed to gel in place, have been demonstrated as
efficient, reusable solid phases as described by Wolfe et al. (29).
These solutions are simply flowed into microchambers as liquids
and allowed to gel to form a porous DNA extraction bed. The cata-
lyzed reaction can be controlled to create pores that allow enough
surface area for the binding of DNA, as demonstrated by Wu et al.
(30), who utilized the phase to extract DNA from bacterial
(anthrax), viral (varicella zoster and herpes simplex), and human
(blood) sources, with >65% extraction efficiency from blood. In a
later translation of the work, Wen et al. (31) utilized a photopoly-
merizable sol-gel monolith to extract DNA in a capillary-based sys-
tem, which was further modified for microchip-based extraction
(32). The photopolymerization step allows for easy and precise for-
mation of the solid phase within the microdevice, without the use
of retaining weirs or other microfabricated features. In addition, the
solid phase has recently been incorporated into a novel two-stage
microdevice that was developed for DNA extraction from blood––a
C18 reverse phase column for protein capture (stage 1) in series
with a monolithic column for DNA extraction (stage 2) (32). The
device had a high capacity for DNA in blood (>240 ng) and was
found to achieve �70% extraction efficiency. Further, the sol-gel
extraction medium can be not only be used alone, but also as a
glue, to immobilize a silica bead phase, maintaining a reproducible
extraction column from run to run. The latter solid phase was eval-
uated by Breadmore et al. (33), who optimized flow rates and load-
ing pH to affect a sample purification in 15 min from bacterial
sources (anthrax and salmonella) and whole blood. In addition,
intra- and interdevice reproducibility was demonstrated, with as
high as 79% extraction efficiency achieved.

The utility of this solid phase and extraction protocol was also
demonstrated for DNA purification from sperm cells, with a view

(a) (b)

FIG. 4—An example of a high surface area structure microfabricated out of plastic (polymethylmethacrylate). These structures can be functionalized for
efficient capture of nucleic acids, providing large surface areas and increased binding capacity for DNA extractions, as well as reproducible and low-back-
pressure columns for purification. (a) A channeled structure where the individual channels are 30 lM in diameter. (b) Complementary (inverse) structure to
that shown in (a). (Photo courtesy of HT Microanalytical, Inc. [Albuquerque, NM].)
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toward analysis of sexual assault evidence. Also, excess DNA tem-
plate added to the PCR can result in off-scale signal and other PCR
artifacts. Bienvenue et al. (34) describe the use of a single-channel
extraction device and modifications to the Breadmore et al. (33) cell
lysis buffer to allow for on-chip sperm cell lysis and DNA purifica-
tion (Fig. 5). The resultant DNA was of suitable purity and concen-
tration for subsequent STR amplification, with comprehensive STR
profiles generated. These results demonstrate the potential of micro-
chip-based extraction methods for forensic analysis.

Another unique approach to microscale DNA extraction currently
under development utilizes a serpentine channel design combined
with an immobilized silica bead solid phase and fluidic oscillation.
The method, developed by Chung et al. (35), relies on an immobi-
lized silica solid phase. Instead of a solid column of packed phase,
the silica beads were immobilized on the plasma-oxidized surface
of the PMMA channels. Following bead immobilization, the solu-
tions required for DNA binding, purification, and release were flo-
wed back and forth through the device. By oscillating fluid flow
over the immobilized phase, marked improvement of recovery and
extraction efficiency over the same extraction methods with free
beads was demonstrated. The method represents yet another micro-
chip-based system for DNA purification with potential for forensic
application.

The development of large-scale, commercial, SPE protocols
enabled the facile translation of DNA extraction into microfluidic
systems. The methods described here represent the first examples
of microchip-based sample preparation for downstream sample pro-
cessing and a major step toward the development of microfluidic
systems capable of accepting crude samples for DNA analysis. As
advancement of these technologies continues, the focus will likely
turn from basic method development to the incorporation of extrac-
tion techniques with other microfluidic processes (cell sorting,
DNA quantification PCR amplification, DNA separation and detec-
tion). The implementation of microfluidic DNA extraction for

forensic analysis will allow the processing of a wide variety of
samples and is an important component of future fully automated
genetic analysis.

DNA Quantitation

DNA quantitation is a necessity in forensic DNA analysis, in
contrast to most clinical analyses where the sample size is more
consistent and DNA content more reproducible. Because of the pre-
dominance of samples containing low concentrations of DNA,
quantitation must be carried out prior to PCR in order to minimize
stochastic fluctuations that could cause allelic dropout from unequal
amplification of the two alleles. For forensic use, DNA quantitation
must be sensitive (mass detection limit on the order of picograms)
and specific for human DNA.

To date, minimal effort has been directed at addressing pre-PCR
DNA quantitation on microdevices. As demonstrated with a com-
mercial microchip electrophoresis unit that uses an intercalating
agent for detection, quantitation of DNA (typically PCR products)
can be accomplished based on the separation and detection of
known marker concentrations. While the limit of quantitation is
�50 pg ⁄lL (36), it is not practical for forensic samples where
DNA concentrations are often substantially below the detection
limit. Direct quantitation of DNA on microdevices for forensic ana-
lysis will likely require the use of real time PCR which, conven-
tionally, allows for quantitation of samples in the picogram to
nanogram per microliter concentration range. Although PCR has
been completed extensively on microdevices (as described in the
subsequent section), the demonstration of quantitative PCR (qPCR)
on microdevices is still in its infancy.

The first reported development of micro-quantitative PCR
(l-qPCR) was in 1998, for detection of viral, bacterial, and human
DNA. Using silicon reaction chambers with thin-film heaters, North-
rup et al. (37) demonstrated the use of both intercalating dye

(a)

(b)

(c)

FIG. 5—A microdevice setup for extraction of DNA from sperm cells. This includes a syringe pump, connected to the microdevice with narrow-bore tubing,
and held in place by a homemade plexiglass mount (a). Silica beads 5–30 lm in diameter are packed against a weir (b and c) in the channel (200 lm deep,
420 lm wide) and adhered into place using sol-gel. (Figure reproduced with permission from Bienvenue et al., Journal of Forensic Sciences 2006, 51(2):
266–73. Copyright 2006 Blackwell Publishing, Inc.)

HORSMAN ET AL. • DNA MICROFLUIDICS 789



(ethidium bromide) and 5¢-nuclease (Taqman�, Applied Biosystems,
Foster City, CA) detection methods. A subsequent paper (38) dem-
onstrated detection limits of <10 pg in 40 cycles, comparable with
commercial instruments. It is noteworthy that the l-qPCR assay
could be completed in �35 min compared with 80 min for the con-
ventional qPCR assay; however, the method used a reaction volume
of 50 lL, a volume substantially greater than that used in many
conventional methods. While these papers suggest proof-of-principle
in glass microdevices, these silicon microchambers are not easily
integratable with preceding and subsequent sample processing steps.

In 2002, a real-time l-qPCR system was reported using silicon
and Pyrex glass microdevices and SYBR Green I, a common con-
ventional intercalating dye, in which 35 thermal cycles were com-
pleted in approximately 26 min (39). Owing to the length of the
microchannels, the reaction volume was 25 lL, still much higher
than many microchip (l-PCR) methods. This microchip method for
real time detection is promising, especially in its potential for integ-
ration with other sample processing steps that have previously been
developed.

A two-step Taqman l-qPCR assay was also demonstrated in
2002 by Quake et al. (40). The PDMS microdevice (shown in
Fig. 6a) met the expectation of microminiaturization, using 12 nL
reaction volume, combined with a flow-through approach to PCR,
where the fluid was moved (via a microchannel) through two hea-
ted zones (denaturation and extension ⁄ annealing temperatures),
resulting in 20–30 sec cycles. Figure 6b provides compelling evi-
dence that the fluorescence profiles generated on the microscale
and normalized against background produce the same type of
curves typically obtained by real-time PCR with conventional
macroscale instrumentation. Quantitation was not shown in the
work, although appears to be feasible given a design incorporating
multiple reaction chambers to generate a standard curve. While
numerous other l-PCR methods have been demonstrated (see PCR
section below), this work accomplished the simultaneous amplifica-
tion and detection of PCR product.

A l-PCR method with electrochemical detection has also been
developed that has potential for facile DNA quantitation (41). In
this work, a hybrid silicon ⁄ glass microchip with 8 lL reaction
chambers was used to accomplish asymmetric PCR, and the prod-
ucts simultaneously detected by hybridization of the amplified
sequence to a probe-modified electrode––with the system, quantita-
tion of the PCR product should be possible. Although the method
would be effective for qPCR, the potential for widespread use is
limited by the device that has integrated heaters, temperature sensors,

electrodes, etc., thus increasing the cost of the device and making it
less amenable to single-use disposability. While a reusable device
may be acceptable in some clinical and research laboratories, dispos-
ability is anticipated to be paramount criteria in the forensic arena.

It is clear that much work remains in the development of
effective DNA quantitation on microdevices. While a number of
methods are currently under development, at the time of this
writing, l-qPCR appears to be the best fit for the needs of the
forensic science community. The execution of quantitative PCR
brings its unique challenges, most notably in terms of fluorescence
detection in real time; however, it is anticipated that it will advance
quickly and become commonplace in the near future. In addition,
conventional qPCR methods permitting simultaneous male ⁄ total
DNA quantitation or genomic ⁄ mitochondrial DNA quantitation
should be fully extendable to microdevice methods.

PCR

Forensic DNA analysis was revolutionized with the advent of
PCR-based STR profiling in the mid-1990s. Although a very
powerful technique, the roughly three-hour PCR (for 30 cycles) sig-
nificantly lengthens the overall analytical process. Hence the ther-
mocycling required for the PCR process, perhaps more so than any
other in the analytical sequence, could benefit by the transition to
the microchip platform. Microchip PCR (lPCR) not only affords a
much faster analysis time but also the opportunity for direct integ-
ration with DNA separation. Moreover, lPCR chambers have vol-
umes on the order of nanoliters to microliters; thereby reducing the
volume of reagents required and, consequently, has the potential to
decrease the cost of forensic genetic analysis dramatically.

Cycling rates in most conventional PCR thermocyclers are
hindered by the rate at which the block, and thereby, the tube and
reaction mix, can be heated and cooled. Microchip PCR speeds
temperature cycling when compared with block thermocyclers
because the microchip substrate (glass or polymer) or reaction liquid
(in the case of IR heating, as will follow) is heated, not a large
block. In addition, hold times in conventional thermocycling (such
as the commercially available STR kits) are on the order of 60 sec
at each step as a result of the large reaction volume and the slow
heating and cooling rates. Microchip methods offer the distinct
advantage of significantly decreasing the reaction time by reducing
the reaction volume by an order of magnitude or more. Pertinent lit-
erature is described below, although, for a detailed review of
the wealth of literature on microchip-based PCR, see ref. (42).
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In 1998, a novel method of l-PCR was demonstrated using a
device with three heated zones, correlating to the annealing, exten-
sion, and dissociation temperatures of thermal cycling (43). The
reaction mixture was flowed through each zone in one continuous
channel. Hold times at each temperature were, consequently, based
upon the flow rate of the mixture through the zones. In subsequent
improvements to the flow through PCR method, Hashimoto et al.
(44) reported PCR amplification of a 99 bp fragment of lambda
DNA in only 1.7 min (20 cycles). Unlike many other l-PCR meth-
ods, this method is not highly amenable to integration with other
sample processing steps. Direct integration with other sample pro-
cessing steps, such as the electrophoretic separation of PCR prod-
ucts is a hallmark of microfluidic devices and has been
demonstrated in the literature (45–49).

Microchip PCR integrated with microchip electrophoresis
(l-PCR-ME) was first reported in 1996 by Mathies and coworkers
(46). Unfortunately, the design of the PCR chamber made it
impractical for further integration of processing steps on the front
end, such as DNA extraction. In addition, large volumes (50 lL)
were utilized for PCR, which have been shown subsequently by
numerous laboratories to be unnecessary. Using a resistive heater,
30 sec cycles were achieved, with an overall assay time of approxi-
mately 15 min for 30 cycles. The entire process of DNA amplifica-
tion and separation required approximately 45 min in the device
(46). Importantly, however, in 2001, Mathies et al. (48) demonstra-
ted l-PCR-ME from single DNA templates. Although the stochas-
tic effects at these low copy numbers are problematic for the
forensic analyst, the work demonstrates that no loss in sensitivity is
encountered by the transition to the microscale.

As an alternative to the contact heating described in all of the
aforementioned methods, Oda et al. (50) developed the first totally
noncontact heating method for PCR in capillaries using infrared
radiation (IR). The IR light source was used to selectively heat the
water in solution rather than the microdevice substrate, resulting in
faster cycling times than with the Peltier and resistive heating
methods. Initially, the work was completed in �28 lL volumes,
although subsequent manifestations of the method used nanoliter

reaction volumes (51). A 240 sec PCR (15 cycles) was demonstra-
ted in polymeric microdevices with a 2 lL volume using IR heat-
ing as a result of the well-matched thermal properties of the
polyimide to the heating source (52). In borosilicate glass micro-
devices, Easley (53) demonstrated 25-cycle amplification of a
500 bp lambda phage DNA fragment in 5 min in a 130 nL reac-
tion. This represents one of the fastest amplification reported to
date and is approaching the biological limit of Taq polymerase.
Unfortunately, fast amplifications represent only a portion of the
challenge. Multiple PCR chambers (for simultaneous reactions) and
multiplex amplifications (such as the STR kits) must also be devel-
oped to replicate the conventional technology.

On the macroscale, numerous PCR reactions can be performed
simultaneously, as most conventional thermocyclers hold 24 or 96
polypropylene tubes. Therefore, to compete with conventional
thermocyclers in terms of throughput, microdevices must allow for
several reactions to be completed simultaneously, most importantly
positive and negative controls. In the forensic arena, it also may be
helpful if several items of evidence from a single case could be
processed concurrently, therefore, multiple PCR chambers on a
microdevice is an important consideration, particularly if the foren-
sic DNA analysis microdevices were to be of a modular design
(see Integrated versus Modular section below). The major limitation
here is that uniform heating and cooling rates must be demonstra-
ted in each chamber in order to ensure the fidelity and lack of bias
in each amplification, which is a particular concern in some meth-
ods (e.g., IR heating) more than others. Simultaneous amplification
in multiple PCR chambers on a single microdevice has been shown
by Waters et al. (54) (four chambers).

In addition to multiple PCR amplifications on one device, for a
PCR microchip to be viable in the forensics laboratory, it must be
capable of amplifying multiple loci simultaneously, as accomplished
using commercial STR kits. Multiplex l-PCR has been demonstra-
ted by Lagally et al. (45,47) and Waters et al. (55), through amplifi-
cation of both amelogenin fragments, Legendre et al. (56) with
AmpFlSTR� COfilerTM and ProfilerTM amplifications (Applied
Biosystems, Foster City, CA) on microdevices (Fig. 7), and Schmidt
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et al. (57) using PowerPlex� (Promega Corp., Madison, WI) 16
amplifications on microdevices in 1 lL reaction volumes. Legendre
et al. (56) reported the first multiple loci STR amplification on a
microchip, in only 200 nL. Thermocycling was completed on a con-
ventional thermocycler in 100 min. No attempt was made to further
decrease the cycling time, but there is every reason to believe that a
move to an improved heating method would decrease thermo-
cycling time significantly––in a manner similar to cycling times
observed for other PCR amplifications on microdevices.

PCR has been a common pursuit among analytical microchip
researchers, as demonstrated by the wealth of literature on the topic
(42). However, for forensic DNA analysis, there remain a number
of avenues for development. Extensive work has not been shown
using the commercially available forensic STR kits or, further, mul-
tiple STR amplifications on a single device. When fully developed,
however, microchip PCR will undoubtedly be a considerable time
and cost savings to the forensic community.

DNA Separations

Forensic DNA profiling and genotyping is dependent upon the
ability to separate STR sequences. Historically, these separations
have been performed using electrophoresis in slab gels constructed
of polyacrylamide (5). Although slab gels do allow for multiple
samples to be run in parallel, there are drawbacks associated with
these techniques. First, preparation is time and labor intensive, but
more importantly, and fundamentally, slab gels are vulnerable to
Joule heating, which limits the voltage that may be applied to the
gel, thereby limiting the rate at which the separations may be
accomplished. As a result of this limitation, capillary electrophor-
esis-based separations in fused-silica capillaries have become
a viable alternative to the slab-gel format. The high surface-to-
volume ratio inherent to the capillary (compared with that of the
slab gel), more effectively dissipates Joule heating and, thus, allows
high separation voltages to be applied, resulting in faster separation
times. In addition, capillaries can be interfaced easily with online
detection systems (laser-induced fluorescence, UV), permitting for
high-resolution separations with rapid, accurate detection and sizing
of alleles. As a result, capillary electrophoresis has become a
widely accepted method for STR analysis.

Just as the forensic DNA analysis community witnessed the shift
in technology from slab gels to capillaries in the mid-1990s, the
translation of STR separations to the microchip format is anticipa-
ted, with its accompanying analytical improvements. Sample and
reagent volumes needed in microchips are reduced further from that
needed by capillaries, thereby decreasing the cost of each analysis
and reducing sample consumption. In addition, faster separations
may be achieved in microchips because higher separation voltages
may be applied before encountering Joule heating (58). Multiplexed
formats for DNA separations have also been demonstrated to allow
high-throughput processing and, hence, truly contend with the con-
ventional methods. Perhaps more significantly, however, micro-
chips, unlike capillaries, afford the distinct opportunity to integrate
other sample preparation steps of the forensic analysis (such as
DNA extraction and PCR amplification) in an automated fashion
[e.g., (59)].

For the development of any microchip system for STR separa-
tions to be successful, a number of requirements must be met. Nat-
urally, these are highly dependent upon the ultimate design of the
device (i.e., if the device is modular [high-throughput, single func-
tion] or totally integrated [multiplexed with other sample preparat-
ory steps]). For multi-use, multi-sample separation platforms, a
DNA sieving matrix of low viscosity is necessary so that it can be

replaced between separations to ensure no carryover of DNA. In
addition, the separation length must be adequate to obtain single-
base-pair resolution while remaining compact enough to keep the
device small. Also, to compete with the conventional capillary
counterpart, the separations must be fast (<30 min) and multiplex-
able to allow for high-throughput analysis.

Compared with the wealth of examples of other DNA separa-
tions in the literature, few examples of true separations of STR
products for forensic analysis in microchips have been demonstra-
ted (60–67). More commonly, high-resolution DNA separation
techniques have been developed in capillary for sequencing, STR
typing, or other genotyping applications; however, these methods
are often readily translatable to the microchip format. Development
of a microdevice for high-resolution DNA separations necessarily
focuses on finding a polymer with high-resolving power in a mini-
mum separation distance.

For single-use devices, nonreplaceable sieving matrices, those
that cannot be removed and refilled between runs, can be used to
obtain DNA separations. These cross-linked gels are typically opti-
cally ⁄ UV transparent, electroneutral, and give better resolution than
noncross-linked gels, but are not replaceable. Because of gel shrink-
age and bubble formation over time, this relegates their applicabil-
ity to primarily single-use devices. Photopolymerizable matrices,
although nonreplaceable, such as those described by Ugaz et al.
(68,69), may be advantageous for microfluidic systems as the nat-
ure of the polymer allows for precise placement within the device
and high-resolution separation of DNA fragments. Accordingly,
although not preferred for capillary-based systems, nonreplaceable
sieving matrices may find more widespread application in micro-
fluidic systems because of the potential disposability of the device.

In contrast to nonreplaceable systems, replaceable sieving matri-
ces allow for the capillary or microdevice to be used repeatedly.
One of the most commonly employed classes of replaceable siev-
ing polymers used in the separation of STRs is self-coating poly-
mers. These polymers rely on hydrogen bonding or hydrophobic
interactions to adsorb to the wall and suppress electroosmotic flow,
requiring no additional passivation steps to achieve high-resolution
separations (70). Poly(vinylpyrrolidone) (PVP) (71), hydroxyethyl-
cellulose (HEC) (72,73), and poly-N,N-dimethylacrylamide
(PDMA) (7,72–74) were successfully utilized to separate STRs in
capillary. It should be noted that PDMA is a component of
Performance Optimized Polymer-4 (POP-4), the polymer utilized
for STR separations in one commercially available capillary-based
system (5). Because of their low viscosities, these self-coating
polymers should be readily adaptable to the microchip format.

In addition to self-coating polymers, high-resolution DNA sepa-
rations have also been accomplished using nonself-coating sieving
matrices, such as linear polyacrylamides. These polymers require
that the surface of the capillary or microchip be pretreated to sup-
press electroosmotic flow (EOF). To accomplish this, multiple pre-
paratory steps must be undertaken that typically involve
silanization to covalently bond the polymer to the surface (75). Lin-
ear polyacrylamide (LPA) was first used for DNA sequencing in
1993 and has become one of the most widely used replaceable
separation matrices because of its low viscosity and long read
length (76). Numerous DNA separations, including all of the repor-
ted STR separations that have been demonstrated on chip to date,
use polyacrylamide as the sieving matrix. Using polyacrylamide,
Schmalzing et al. (60) analyzed PCR product from an amplification
of the CTTv multiplex in <2 min, demonstrating electrophoretic
separations in 2.6 cm, but resolution of the 9.3 ⁄ 10 alleles of the
TH01 locus was not obtained. By increasing the separation length
to 11.5 cm and separation time to 10 min, resolution of these
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alleles was achieved (61). Baseline resolution of all alleles in the
PowerPlex� 16 amplification kit was reported by Mitnik et al. (63)
in an 11.5 cm microchannel (35 min separation). In 2004, utilizing
4% LPA, Ehrlich reported the development of a 16-channel micro-
device for STR separations (65). In the device, 16 simultaneous
separations were completed in approximately 40 min with single-
base-pair resolution and four-color laser-induced fluorescence
detection, as demonstrated using a PowerPlex� 16 allelic ladder.
However, the work utilized prepurification of the PCR product and
separation times that are essentially equivalent to current CE meth-
ods, lending little impetus to move to the microchip methods.
Mathies et al. (66,77–81) have also sought high-resolution DNA
separations on microdevices, although primarily for sequencing
reactions. In 2002, a 96-channel device (15 cm in diameter) cap-
able of single-base-pair resolution up to 430 bp, which exceeds that
necessary for the commercially available STR multiplexes, was
developed (77). More recently, STR profiling was reported on a
similar device, with the necessary single-base-pair resolution of the
9.3 ⁄ 10 TH01 alleles, in <25 min (66,79). Although STR separa-
tions have been demonstrated on microdevices utilizing linear poly-
acrylamide, it appears that shorter separation lengths (<10 cm) are
not feasible with this separation matrix while maintaining the
necessary single-base-pair resolution (82). It should be noted that,
while the vast majority of the work reported is in glass microdevic-
es, STR separations have been demonstrated on polymeric microde-
vices, as well (64,83). Shi et al. (83) separated Profiler Plus� STR
fragments in �18 min in a 10 cm separation length.

Poly(ethyleneoxide) (PEO), another nonself-coating polymer, has
also been used to achieve single-base-pair resolution when separ-
ating STRs, although only on capillary-based systems (84,85). The
PEO matrix is advantageous compared with POP-4, as the separa-
tions are faster, accomplished in shorter distances, and do not
require high temperatures, all of which result in easier translation
to the microchip format (84).

Although separation matrices are important for reproducible and
well-resolved DNA profiles, they are not the only factor that must
be taken into consideration when transferring capillary-based meth-
odologies to microdevices. The separation distance required to
obtain adequate resolution of STRs in the device is an extremely
important factor to consider, as conventional capillary STR separa-
tions use a 42 cm capillary to obtain the needed resolution. In
microdevices, the challenge is to achieve the same high-resolution
separations, while maintaining a relatively small microchip foot-
print. Consequently, the focus of much research is on the develop-
ment of novel channel geometries as a means to accommodate the
long separation distances (and, hence, single-base-pair resolution)
without greatly affecting the overall size of the microchip (86–89).
Folding the fluidic channels (i.e., making serpentine channel
designs) to reduce the size of microchips by introducing turns is
one possible solution to the problem; however, simply creating a
series of turns in the channel to maximize separation distance
severely degrades resolution (90). The loss of resolution, due to a
‘‘racetrack effect,’’ results from molecules on the inside wall travel-
ling a shorter distance than those on the outside wall, but also at a
faster rate, causing dispersion and loss of resolution (Figure 8)
(87). In addition, electric field distortions created in the turns can
contribute to a loss in resolution (91). A number of approaches
have been developed to combat the dispersion, including the devel-
opment of ‘‘tapered turns’’ (87), ‘‘constricted turns’’ (88) and ‘‘wavy
turns’’ (89). The Mathies group has utilized a number of ‘‘tapered
turns’’ in the design of the microdevice for STR separations
(Figure 9B) and, thereby, have accommodated 96 separation chan-
nels into a microchip approximately the size of a compact disc.

Finally, to compete with slab gels and capillary instruments that
can run many samples in parallel, a microchip-based platform for
forensic DNA analysis must also be capable of high-throughput
separations. A currently available commercial device, called Gene-
Bench, is approximately 25 · 8 cm (� 16 cm effective separation
length) and simultaneously accomplishes 16 separations in up to
40 min [e.g., (67)]. Because the sieving matrix and channel designs
have not been optimized to reduce the overall size of the device,
however, it can hardly be termed a ‘‘microchip,’’ as it is nearly
10 in long. In contrast, the Mathies group has developed a 96-chan-
nel micro capillary array electrophoresis (lCAE) device (Fig. 9a),
in which STR fragments are separated on a 15 cm diameter glass
wafer, resolving single-base-pair differences in under 25 min for up
to 96 samples in parallel (66). Figures 9c and 9d shows typical
electropherograms of the Promega PowerPlex� 16 allelic ladder
and an STR profile (amplified with the PowerPlex� 16 kit) from
the lCAE device, where it is evident that the necessary resolution
is obtained. Yeung et al. (79) successfully demonstrated the func-
tionality of the device on nonprobative casework samples.

The genesis of the analytical microchip is rooted in separations;
consequently, it is natural that their use in DNA separations is the
most advanced of all sample preparation steps described here. As a
result, the DNA separation module has been the first aspect intro-
duced into forensic laboratories. The lCAE device is currently
being evaluated at the Virginia Department of Forensic Sciences
(66). The ability to achieve high-throughput DNA separations in
microdevices makes these microchip-based systems as efficient as

FIG. 8—Simulation of the ‘‘racetrack effect.’’ As molecules of the sample
band traverse through the turn, the molecules on the inside of the channel
not only traverse less distance, but are also subjected to band-broadening
diffusion, causing a degradation of resolution and rendering such channel
designs unusable for high-resolution forensic analyses. (Figure adapted
from and reproduced with permission from Griffiths and Nilsson, Analytical
Chemistry 2001, 73, 272–8. Copyright 2001 American Chemical Society.)
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current multiplexed capillary systems and, thus, a viable alternative
to existing separation technologies. As a result, widespread use of
these devices in forensic laboratories for STR separations is antici-
pated in the near future.

Integrated Versus Modular

In developing microdevices for forensic applications, a number
of issues must be addressed with respect to the overall design of
the devices. Included in these is whether the system should be
‘‘modular’’ (different chips for different sample preparation methods
and for analysis) or ‘‘integrated,’’ with sample preparation seam-
lessly mated with analysis on the same device in a way that was
originally conceptualized for lTAS or LOC systems.

LOC systems with ‘‘sample-in-answer-out’’ capabilities have
been promised now for more than a decade. Only recently has a
microdevice with this capability been demonstrated using clinical
applications (59). The device begins with introduction of <1 lL
crude sample and incorporates DNA extraction and purification,
PCR amplification, and DNA separation in a seamless fashion. In
one example, anthrax infection was detected in mouse blood with
a total analysis time of <25 min. Similarly, an integrated microde-
vice for forensic DNA analysis can be envisioned. Figure 10 illus-
trates a basic design for a totally integrated microchip that would
be used for forensic analysis of vaginal swab evidence, as fore-
seen by our laboratory. All of the processes required for STR
analysis of DNA are incorporated into the device, allowing sam-
ple introduction at one point with STR results collected at the
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FIG. 9—(a) Design for the 96-channel radial capillary array electrophoresis microdevice by Mathies and coworkers. The device is comprised of 48 doublet
structures, each containing two electrophoresis lanes that share common cathode and waste reservoirs. (b) Magnified view of the doublet structure, highlight-
ing the ‘‘hyperturn’’ (also called ‘‘tapered turn’’), which prevents band-broadening dispersion as the DNA molecules traverse the turn, thereby enabling high-
resolution DNA separations in a compact device. Electropherograms of (c) Promega PowerPlex� 16 allelic ladder and (d) an STR profile obtained from
0.17 ng template DNA amplified using Promega PowerPlex� 16 obtained on the micro capillary array electrophoresis (lCAE) microdevice. (Figure adapted
and reproduced with permission from Yeung et al., Journal of Forensic Sciences 2006, 51(4), 740–7. Copyright 2006 Blackwell Publishing, Inc.)

FIG. 10—Prospective design for a totally integrated microdevice for
forensic DNA analysis of sexual assault evidence. The device would be
capable of accepting biological material desorbed from a cotton swab
and processing the sample through various domains (highlighted) that
would accomplish sequential cell sorting, DNA extraction, quantitation,
amplification, and separation of STR products in an automated fashion,
providing a fully functional lTAS for forensic genetic analysis. A design
such as the one pictured, would allow for sample processing without user
intervention at each of the analysis steps, eliminating multiple entry
points for contamination and providing a contained and controlled analy-
sis system.
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detection point. A distinct advantage of an integrated system is
the minimal manual sample handling, which diminishes opportun-
ities for laboratory sources of contamination. However, a totally
integrated system requires fabrication of additional features and
significant complexity into the microchip and requires precise con-
trol of fluidics in various regions of the chip, while remaining
cost-effective for disposability.

An alternate manifestation of microchips in forensic laboratories
is the modular system, where separate devices may be used for
differential extraction ⁄DNA extraction, DNA quantitation and
amplification, and STR separation. Modular devices provide a
number of characteristics that are particularly advantageous for
forensic analysis, including the opportunity to isolate each pro-
cessing step on a different microchip. While this requires less flu-
idic control, the seamless (and efficient) transfer of material from
one module to the next must be addressed. Additionally, the
modular design provides the flexibility of using different micro-
chip substrates for each module, particularly those best suited to
the process (i.e., plastic for PCR, glass for separations, etc.). They
also offer the opportunity to store evidence on-chip at virtually
any (or all) steps of the analysis for further processing at a later
date. Finally, the modular design (e.g., Fig. 11) provides more
flexibility for multiplex analysis of samples for high throughput
applications.

The advancement of DNA technology to microdevices affords
forensic scientists with a yet unaddressed issue––to what extent
should the portability of these devices be harnessed? That is, should
a totally integrated device (with accompanying instrumentation) be
used in the field in order to obtain profiling results rapidly and,
thus, aid in investigative decision-making? Alternatively, should a
sample-preparation module be utilized by crime scene technicians
to store a probative sample for subsequent analysis in the laborat-
ory? These, among other issues, result from the new technology
and must be addressed by the forensic community in parallel with
its development.

In both modular and integrated designs, disposability of the
devices will be necessary in most instances. That is, any sample
preparation modules would likely be deemed single-use, although
the separation module may be designed for repeated use, in a man-
ner analogous to the current capillary-based methods used for STR
product analysis. While each design has its inherent pros and cons,
the forensic community is at a unique juncture to help shape the
future research directions by making their opinions and needs

known with regard to the ultimate manifestation of a microdevice
for forensic DNA analysis.

Other Forensic Device Applications

The scope of semi-automated evidence processing on microdevic-
es is not limited to STR analysis. Single nucleotide polymorphism
(SNP) analysis of forensic DNA evidence has also garnered atten-
tion in the forensics community (92,93); however, a more thorough
discussion of the technology is outside the scope of this review. In
brief, SNP analysis can be achieved by numerous means, including
hybridization arrays (94), and while these are commercially avail-
able (primarily for basic biomedical research), they are not routinely
integrated with sample preparation steps, a major benefit of micro-
fluidic systems. Other more classical microfluidic approaches of
SNP analysis, likely lower in throughput capability, have been dem-
onstrated as well (95,96). Additionally, the analysis of RNA on
microdevices is foreseeable as well. Although few examples of
microfluidic analysis of RNA exist (97–100), it is easy to envision
the application of microfluidic devices to the purification and
reverse transcriptase PCR amplification of RNA. Disposable, self-
contained microchips may even enable a more efficient analysis of
nuclease-susceptible RNA, preventing contamination and preserving
a sterile environment for these applications.

The reach of microchip technology to forensic analyses beyond
nucleic acid evidence is becoming increasingly evident. In the area
of illicit drugs and toxicology, microchip assays have been developed
for blood alcohol testing (101) as well as separation and identification
of amphetamines (102), barbiturates (103), and tricyclic antidepres-
sants in serum (104). With the latter two examples, the microdevices
were designed for detection by electrospray ionization mass spectr-
ometry. Microdevices for use in counterterrorism efforts are also cur-
rently under development, including the detection of explosives
(105–109), chemical warfare agents (110,111), and biowarfare agents
(33,112,113). See reference (108) for a focused review of the litera-
ture. These applications of microchip separations, in combination
with miniaturized mass spectrometry (114), make confirmatory iden-
tification of these analytes possible in the field. It is foreseeable that
any sample processing steps prior to separation, such as SPE of small
molecules, can be integrated into a microdevice for automation of
the entire process. A number of research groups are utilizing micro-
chips in this manner (115–117), similar to the integration of DNA
extraction, PCR, and DNA separations highlighted above. (59)

Module 1: Module 2: Module 3:
Cell sorting, DNA extraction

and DNA quantitation
STR separation
and detection

PCR

FIG. 11—Proposed modular microdevices for forensic DNA analysis. In this manifestation, the sample processing steps are divided into three modules: (1)
Cell sorting ⁄ DNA extraction ⁄ quantitation, (2) PCR, and (3) STR separation. Seamless interfacing of these modules would be required for total analysis to be
accomplished, necessitating microfluidic interconnects between each device. The modular design would allow for easy storage of the biological material at
each step and may allow a slower conversion to microfluidic technology by permitting the introduction and implementation of the devices into crime labs in a
stepwise fashion. A modular device design, however, may require more user intervention and also provide more entry points for potential contamination.
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Conclusions

The rapid development of microdevices over the past decade has
forged the way for their successful application to forensic genetic
analyses. As improvements to the individual microscale sample
processing steps, such as DNA purification, amplification, and
separation for both clinical and forensic purposes continues, the
potential of microfluidic systems for genetic interrogation has
become increasingly more evident. Because of the potential impact
of microchips on the forensic community, scientists have recently
begun to address the unique caveats inherent to the analysis of for-
ensic samples. As a result, the application, development, and valid-
ation of these devices for forensic DNA analysis has grown
tremendously and leaves little doubt that a paradigm shift is occur-
ring in forensic DNA testing.

A number of scientific and engineering hurdles must be over-
come before microfluidic devices can become universally imple-
mented in forensic laboratories. Foremost, there is a need to
effectively bridge the gap between the macroscale and microscale
regimes. More specifically, the front end of the device must be able
to accommodate ‘‘large’’ (hundreds of microliters) volumes for
input of the biological material, whereas the volumes typically
manipulated on chip are <1 lL and, for separations, <1 nL. For
instance, in a sexual assault case, biological material is typically
eluted from a vaginal swab in approximately 500 lL. Therefore,
the microdevice must be able to accommodate the entire volume
and concentrate the purified DNA into nanoliters to be directed to
the PCR chamber for amplification in a total reaction volume of
<1 lL. While the volume (and, thus, the associated thermocycling
time and reagent consumption) required for the PCR amplification
has been dramatically reduced on-chip when compared with the
conventional process, there has not been sufficient research to
determine if a subsequent reduction in the mass of DNA required
will follow. Reports (48,118–121) have demonstrated single-copy
(and other low copy number) DNA amplification on microdevices,
although nothing has been reported with regard to limits of detec-
tion or stochastic effects when amplifying STRs on-chip. The con-
centrating effect on the microscale (with the same starting mass of
DNA) suggests that fewer starting copies can be amplified before
encountering stochastic effects such as allelic dropout. However,
only through further evaluation will it be known whether imple-
menting microdevices in forensic laboratories will diminish the
amount of evidentiary material needed or consumed.

While the final manifestation of microdevices in forensics is not
yet clear, it is likely that microdevices will be the next technology
platform encountered in forensic DNA laboratories. Modular, sin-
gle-process devices and totally integrated microfluidic systems are
in development to fill both high-throughput batched and complete
single-sample analysis niches. One could envision high-throughput
devices to be more advantageous for large DNA caseloads, whereas
totally integrated devices may be preferable for crime scene testing
or in high-priority cases that require rapid results. Commercializa-
tion of these systems has only just begun, with DNA separation
devices already available; however, with the successful validation
and implementation of these microfluidic platforms in crime labs, it
is anticipated that other sample-processing modules and integrated
microfluidic analysis systems will not be far behind. While the
eventual cost of these microdevices is, understandably, important to
the forensics community, it is impossible to predict at the current
time, as the cost will depend upon the substrate utilized, the com-
plexity of the devices (including integrated vs. modular designs),
and the market. The flexibility of microfluidic device design makes
their application to casework analysis both in crime labs and at the

crime scene a viable alternative to current methodologies and repre-
sents a revolutionary change for evidence processing and handling.
Furthermore, we believe the speed and automation that accompan-
ies the technology transfer from the conventional, macroscale pro-
cesses to the microscale analytical methods stands as a viable
solution to the DNA casework backlog in forensic laboratories.
While robotics can, undoubtedly, result in greater automation in the
laboratory, there is no inherent decrease in the processing time of
the component steps, resulting in only an incremental advantage
over the conventional methods. With the development, validation
and implementation of microfluidic devices for forensic DNA evi-
dence, forensic scientists would be armed with a rapid analysis
technology that could radically change the established approach to
DNA analysis by enabling more efficient casework processing.
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